Cellular organization and substructure measured using angle-resolved low-coherence interferometry.

نویسندگان

  • Adam Wax
  • Changhuei Yang
  • Vadim Backman
  • Kamran Badizadegan
  • Charles W Boone
  • Ramachandra R Dasari
  • Michael S Feld
چکیده

We measure the organization and substructure of HT29 epithelial cells in a monolayer using angle-resolved low-coherence interferometry. This new technique probes cellular structure by measuring scattered light, as in flow cytometry, but offers an advantage in that the structure can be examined in situ, avoiding the need to disrupt the cell monolayer. We determine the size distribution of the cell nuclei by fitting measured light-scattering spectra to the predictions of Mie theory. In addition, we obtain information about the cellular organization and substructure by examining the spatial correlations within the monolayer. A remarkable finding is that the spatial correlations over small length scales take the form of an inverse power law, indicating the fractal nature of the packing of the subcellular structures. We also identify spatial correlations on a scale large compared with the size of a cell, indicating an overlying order within the monolayer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear Morphology Measurements with Angle-Resolved Low Coherence Interferometry For Application To Cell Biology And Early Cancer Detection

The study of intact, living cells using non-invasive optical spectroscopic methods offers the opportunity to assess cellular structure and organization in a way that is not possible with commonly used cell biology imaging techniques. We have developed a novel spectroscopic technique for diagnosing disease at the cellular level based on using low-coherence interferometry (LCI) to detect the angu...

متن کامل

Experimental calibration of a new angle-resolved low coherence interferometry system

We describe results of calibration experiments using a new angle-resolved low coherence interferometry system. Light scattered from a polystyrene microsphere sample are compared with Mie Theory predictions to determine the size of the particles. © 2003 Optical Society of America OCIS codes: Low coherence interferometry, light scattering spectroscopy.

متن کامل

Inverse scattering solutions using low-coherence light.

We present a new wave-vector-space approach for solving inverse scattering problems. In our formulation, the theories for diffraction tomography and coherence gating are combined to explain 3D reconstruction with low-coherence light. Specifically, we apply this method to solve the scattering problem with broadband fields for transmission and reflection measurements. Our results can be applied t...

متن کامل

Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis.

We present a light scattering study using angle-resolved low coherence interferometry (a/LCI) to assess nuclear morphology and subcellular structure within MCF-7 cells at several time points after treatment with chemotherapeutic agents. Although the nuclear diameter and eccentricity are not observed to change, the light scattering signal reveals a change in the organization of subcellular struc...

متن کامل

Angular light scattering studies using low-coherence interferometry

A modified Michelson interferometer is used to measure path-length resolved angular distributions of light backscattered by turbid media. The path length resolution is obtained by exploiting the coherence properties of a broadband source. The angular distribution is mapped out using a simple optical system to scan the angle at which the reference field intersects the detector plane. Angular sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 82 4  شماره 

صفحات  -

تاریخ انتشار 2002